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Introduction
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The Einstein equations

The field equations of General Relativity (A. Einstein, 1915):

Rµν −
1

2
gµνR + Λgµν = 8πGTµν , c = 1

We consider the following special case:

Vacuum spacetime (Tµν = 0)

Zero cosmological constant (Λ = 0)

Then we have the reduced field equations

Rµν = 0
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The Schwarzschild solution

A solution of the vacuum field equations in case of spherical symmetry
(K. Schwarzschild, 1916):

ds2 = −

(

1 −
2m

r

)

dt2 +

(

1 −
2m

r

)
−1

dr2 + r2dΩ2, G = c = 1

The metric has two singularities:

r = 0

r = rs = 2m, rs = Schwarzschild radius

Consider the curvature invariant RαβγδRαβγδ = 48m2/r6, then:

RαβγδRαβγδ diverges for r → 0!

RαβγδRαβγδ is finite for r = rs!
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Coordinate singularities

The singularity at r = rs is a coordinate singularity! What does this

mean?

Consider the Minkowski spacetime in spherical coordinates, given
by the metric

ds2 = −dt2 + dr2 + r2dΩ2

The metric is singular at r = 0, but we know that flat spacetime has no
true spacetime singularities!

⇒ The coordinates are badly behaved at coordinate singularities!
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The Schwarzschild black hole
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The Kruskal transformation

Is it possible to cover the interior and the exterior region of the

Schwarzschild black hole with one coordinate patch?

Yes! Consider the coordinate transformation (M. D. Kruskal, 1960):

(

u

v

)

=

√
r

2m
− 1 er/4m

(

cosh
(

t
4m

)

sinh
(

t
4m

)

)

The metric now becomes

ds2 =
32m3

r
e−r/2m(−dv2 + du2) + r2dΩ2

u2 − v2 =
( r

2m
− 1
)

er/2m

and it is regular at r = rs = 2m!
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The Kruskal-Schwarzschild solution
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What about uniqueness?

What spherically symmetric maximal solutions do exist?

Kruskal-Schwarzschild spacetime (m > 0)

Minkowki spacetime (m = 0)

A solution with m < 0

Are there more solutions?

In case of analytic solutions: No! (Birkhoff theorem, theorem of
analytic continuation)

In case of C2-solutions: Probably no! But there doesn’t seem to

exist a fully satisfactory proof concerning C2-uniqueness!
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Formulating the goals

Rederive the spherically symmetric maximal solutions in a new
way, based on an idea by M. Heusler.

Try not to make any arbitrary choices during the derivation (such

as staticity, analyticity etc.)

If possible, prove the uniqueness of the solutions on C2-level.

Be mathematically precise!

Try to get some insights about the origin of the 4-fold structure of

the Kruskal-Schwarzschild spacetime.
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Other works in this area

T.M. Kalotas and L. Rizzo (1980): An alternative path to the
Kruskal extension of the Schwarzschild metric

Makes arbitrary assumptions

M.O. Katanaev, T. Klösch and W. Kummer (1999). Global
properties of warped solutions in General Relativity

Does carry out a similar program, but in a wider context

(more general spacetimes)

The maximal solutions are not constructed explicitly

Still no satisfactory uniqueness proof

We will follow the second of these works for some time!
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Deriving the Kruskal-Schwarzschild solution
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Spherical symmetry

By spherical symmetry, the metric must take the following form:

ds2 = g̃ij(x
0, x1)dxidxj

︸ ︷︷ ︸

g̃

+F 2(x0, x1)dΩ2, (i, j) ∈ {0, 1}

Or equivalently:

ds2 =








g̃00(x
0, x1) g̃01(x

0, x1) 0 0

g̃10(x
0, x1) g̃11(x

0, x1) 0 0

0 0 F 2(x0, x1) 0

0 0 0 F 2(x0, x1) sin2 θ








⇒ The spacetime is a warped product of the two pseudo-riemmanian

surfaces g̃ and S2!
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Specializing the field equations (1)

Calculate the Ricci tensor for the simplified metric

Plug it into the vacuum field equations Rµν = 0

⇒ The field equations break up into the following system:

∆̃(F 2) = 2(1)
(

∇̃i∇̃j −
1

2
g̃ij∆̃

)

F = 0(2)

1

F
∆̃F =

R̃

2
(3)

It can be shown, that (1) ∧ (2) ⇒ (3)! So we can forget about (3)!
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Conformal flatness

Every pseudo-riemannian surface is conformally flat ⇒ there exist co-
ordinates in which the metric takes the form:

g̃ = ±ω2(σ, τ)(−dτ2 + dσ2)

Now we introduce the null coordinates u and v:

σ =
u + v

2
, τ =

u − v

2

The metric takes the form

g̃ = ±ω2(u, v)(dudv + dvdu)

⇒ ds2 = ±ω2(u, v)(dudv + dvdu) + F 2(u, v)dΩ2
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Specializing the field equations (2)

Using the even more simplified metric, we can again specialize the field
equations:

±
2

ω2
(∂uF∂vF + F∂u∂vF ) = 1(4)

∂2
uF −

2

ω
∂uω∂uF = 0(5)

∂2
vF −

2

ω
∂vω∂vF = 0(6)

These are three partial differential equations for two unknown functions

F (u, v) and ω(u, v).
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The first integration

Consider the equations (5) and (6):

∂2
uF −

2

ω
∂uω∂uF = 0, ∂2

vF −
2

ω
∂vω∂vF = 0

We want to divide these equations by ∂uF resp. ∂vF in order to perform
one integration, but ∂uF and ∂vF might not be nonzero everywhere!

⇒ We need to remove all points with ∂uF = 0 and ∂vF = 0 from
the domain of integration! The local integration yields

|∂uF | − e−C1(v)ω2 = 0

|∂vF | − e−C2(u)ω2 = 0

where C1(v) and C2(u) are arbitrary C2-functions.
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Fixing the gauge freedom

Again consider the (integrated) equations (5) and (6):

|∂uF | − e−C1(v)ω2 = 0, |∂vF | − e−C2(u)ω2 = 0

The functions C1(v) and C2(u) represent a local gauge freedom! In

order to advance we need to choose a gauge.

Katanaev, Klösch, Kummer: e−C1(v) = e−C2(u) = const

Our choice:

e−C1(v) = η|v|

e−C2(u) = η|u|
, η > 0

This choice only makes sense if u 6= 0 and v 6= 0! So we need to remove
all the points with u = 0 and v = 0 from the domain of integration.
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The four domains of integration

We have twice removed points from the whole (u, v)-plane. But in our

gauge, the removed points are the same! So the (u, v)-plane splits up

into four local domains of integration:
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The field equations in our gauge

After having fixed the gauge freedom, the field equations and the metric
read:

±
2

ω2
(∂uF∂vF + F∂u∂vF ) = 1

∂uF ± ηvω2 = 0

∂vF ± ηuω2 = 0

ds2 = ±ω2(u, v)(dudv + dvdu) + F 2(u, v)dΩ2

Note, that three of the ±-signs are independent from eachother: in fact

there are 8 different cases to distinguish (this is handled more properly

in the Thesis).
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The second integration

After some calculations, another integration can be performed, yielding

dF

dξ
= ±

(

1 +
C

2F

)

, ξ = ξ(u, v)

ω2 = ±
1

2η2uv

(

1 +
C

2F

)

ds2 = ±ω2(dudv + dvdu) + F 2dΩ2

where ξ is an auxiliary coordinate. Note, that we have determined one

of the two unknowns in terms of the other: ω2(u, v, F )!

C is an integration constant, which does not represent a gauge

freedom! It will rather be associated to the mass of the system. C = 0
instantly leads to the Minkowski spacetime!
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The final integration

The remaining differential equation

dF

dξ
= ±

(

1 +
C

2F

)

can be integrated, leading to

ξ(F ) = ±

(

F −
C

2
log |2F + C| + C′

)

This equation can not be solved explicitly for F (ξ)!
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The function ξ(F )

By local inversion we get three functions F1−3(ξ), which all solve the

field equations.
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Domain and image of F1−3(ξ(u, v))
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Finalizing the local integration

After some calculations we get the following result:

2uv(F ) = −e−
2F

C

(

1 +
2F

C

)

ds2 = −
C3

2F
e

2F

C (dudv + dvdu) + F 2dΩ2

These formulas describe three local solutions corresponding to the

three functions F1−3 discussed previously (modulo local and global

gauge freedoms).

They are the only inequivalent local solutions!
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Local vs. global gauge freedom

If A ≃ A′ and B ≃ B′, are the global solutions AB and A′B′ in gen-

eral equivalent, too? In the following we will assume the answer to be
negative.
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Gluing local solutions together

We construct the global solutions by gluing local solutions together.

In the Thesis the following result was proven:

In the chosen local gauge there exist only three maximal

C2-solutions:

The Minkowski spacetime

The Kruskal-Schwarzschild spacetime

A solution with negative mass

To yield a general proof of C2-uniqueness, we need the gauge-

independence of this result! To achieve this, we need a ’yes’ as the
answer to the question asked on the previous slide!

This issue could not be resolved in this work.
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The maximal solutions with m 6= 0
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